
Project Zoraqle Whitepaper
A proof of concept platform for publishing, managing, and monetizing

authentic data streams originating in the physical world

Phil Strong1

CEO, Zymbit
Shivaansh Kapoor2

Software Engineer, Zymbit
Scott Miller3

CTO, Zymbit

25 August, 2022
V1.0

1phil@zymbit.com
2shiv@zymbit.com
3scott@zymbit.com



Contents

1 Abstract 2

2 Motivating Factors 2

3 High Level Architecture 2
3.1 Zoraqle Flow Diagram . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Data Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4 Verifying Data “Authenticity” . . . . . . . . . . . . . . . . . . 4

3.4.1 Scheme 1 . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4.2 Scheme 2 . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4.3 Verification Process . . . . . . . . . . . . . . . . . . . 5

3.5 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Monetizing Data Streams 7
4.1 Marketplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Establishing a Price . . . . . . . . . . . . . . . . . . . . . . . 7

5 Smart Contracts 8
5.1 Why Smart Contracts? . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Important Considerations . . . . . . . . . . . . . . . . . . . . 8

5.2.1 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.3 Example Zoraqle Smart Contract . . . . . . . . . . . . . . . . 9

6 Hardware Oracle 14
6.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 HD Wallet Structure . . . . . . . . . . . . . . . . . . . . . . . 15

7 Zoraqle API 15
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 API Authentication . . . . . . . . . . . . . . . . . . . . . . . 16

8 Zoraqle Web Application 16

1

Copyright © 2022 Zymbit Corporation



1 Abstract

The Internet of Things (IoT) is generating vast amounts of data that is often
unique and has value to multiple parties over time. Such data is a form of
non-fungible digital asset. To effectively transact and monetize such data
assets requires that their origin, integrity, and ownership be established in
a provable way. Additionally, a process is required to connect subscribers,
establish terms of sale, and manage access rights to the data. These require-
ments predicate the foundation of project Zoraqle.

2 Motivating Factors

Zoraqle aims to produce “authentic”1 data streams with immutable own-
ership rights. Owners should have the ability to monetize data streams to
prospective subscribers at prices that they set. Here are Zoraqle’s objectives:

1. Verifiable data “authenticity”

2. Immutable ownership rights and managed granular access rights

3. Facilitate transactions of data and monetary value between owners
and subscribers

3 High Level Architecture

Zoraqle comprises of four key elements which work in synchrony to achieve
the objectives described in the previous section.

1. Hardware Oracle - Embodied by Zymbit’s Secure Compute Node2,
the oracle is the edge device used to collect, package, and post data
packets

2. Smart Contracts - Formalize contractual agreements between own-
ers and subscribers

3. Zoraqle API - Backend service used for interfacing with an off-chain
data store

4. Zoraqle Web Application - Dashboard style user interface respon-
sible for connecting owners with prospective subscribers and enabling
users to seamlessly interact with the smart contracts and Zoraqle API

1Verifiable source and integrity
2https://www.zymbit.com/secure-compute-node/

2

Copyright © 2022 Zymbit Corporation

https://www.zymbit.com/secure-compute-node/


3.1 Zoraqle Flow Diagram

3.2 Scalability

In an ideal world, all data packets that the hardware oracle collects would
live in an encrypted tamper-proof setting. However, due to the current
limitations posed by data sensitivity and on-chain storage costs, we must
utilize on-chain and off-chain storage in parallel to scale the system. Off-
chain storage is magnitudes cheaper than on-chain storage, incentivizing us
to store the bulk of the data off-chain while only storing what is necessary
to prove data “authenticity” on-chain. In the following sections, we discuss
this in further detail.

3.3 Data Packets

In the context of Zoraqle, we define two distinct types of data packets:

1. Primary Data Packet

• UNIX timestamp: λ (32 bytes)

• Reference/Identifier: ζ (32 bytes)

– ζ = BY TESRANDOM32

3

Copyright © 2022 Zymbit Corporation



– ζ remains constant for every data stream’s packet in the given
sampling period3

• A set of raw sensor data from data stream n: ψn (arbitrary size)

2. Derived Data Packet

• UNIX timestamp: λ (32 bytes)

• Reference/Identifier: ζ (32 bytes)

• ||ψn|| (2 bytes)

• Digital signature: γ (65 bytes)

– γ = ECDSASIGN4
secp256k1(Ω

5, pr
6)

Each data packet is associated with a specific source7 and stream7 from
the oracle. Primary data packets are meant to be stored in an off-chain
data store and derived data packets are posted on-chain through a smart
contract. Every primary packet which lives off-chain has a corresponding
derived packet on-chain. The cryptographic relationship between primary
and derived packets is what enables Zoraqle to verify data “authenticity”.

3.4 Verifying Data “Authenticity”

Zoraqle offers two schemes to prove the “authenticity” of primary data pack-
ets. On the surface, they differ in the degree of verification granularity and
on-chain transaction costs.

3.4.1 Scheme 1

Ω = SHA2568(BYTES9(ψn))

At the end of each sampling period, the oracle takes the primary data packet
produced by each stream, and produces a γ with pr set as the corresponding
stream’s private key10. Then it posts the primary and derived packets for
each data stream. Scheme 1 is more capable of proving “authenticity” of
granular data packets but has higher on-chain costs compared to scheme 2.

3An interval of time (set by the owner) at which data packets are posted by the oracle
4https://ethereum.github.io/yellowpaper/paper.pdf - Appendix F
5See section Verifying Data “Authenticity”
6The private key used to sign Ω
7See section Zoraqle Flow Diagram
8https://en.wikipedia.org/wiki/SHA-2
9A function which outputs the UTF-8 endcoded byte array of its input

10See section HD Wallet Structure

4

Copyright © 2022 Zymbit Corporation

https://ethereum.github.io/yellowpaper/paper.pdf
https://en.wikipedia.org/wiki/SHA-2


3.4.2 Scheme 2

θ = SORT11({SHA256(BYTES(ψ1)),...,SHA256(BYTES(ψn))})
Υ = θ1 ∥ θ2 ∥ ... ∥ θn

Ω = SHA256(BYTES(Υ))

At the end of each sampling period, the oracle takes the primary data packets
produced by the data streams, hashes them, sorts their hashes (from low-
est to highest), and produces a single concatenated string from the sorted
hashes. Then, it hashes the resulting string and generates a γ with pr set as
the device key10. Finally, the oracle posts the resulting primary packets and
singular derived packet. Evidently, this scheme results in a single on-chain
transaction per sampling interval, but it has limited verification capability.

3.4.3 Verification Process

On the client side (Zoraqle Web Application or personal integration), own-
ers and subscribers have the ability to verify the integrity of primary data
packets. Here are the steps for scheme 1:

1. Retrieve a primary data packet from the Zoraqle API and stringify the
raw JSON data

2. Convert the stringified packet into a UTF-8 encoded byte array

3. Generate a SHA256 hash from the byte array

4. Call ΞECREC
12 on the hash and the γ retrieved from the derived packet

5. If the resulting address matches the corresponding stream’s address,
the primary data packet is “authentic”

The verification process for scheme 2 is more nuanced than that of scheme
1. One contingency, from a subscriber’s perspective, is that they must have
purchased every primary packet with the same ζ in order “authenticate”
packets generated by scheme 2. If that’s the case, this is how they would
verify their integrity:

1. Retrieve all primary data packets with the same ζ from the Zoraqle
API and stringify the raw JSON data

2. Convert all the stringified packets into UTF-8 encoded byte arrays

11Function which sorts its input from lowest to higest value and returns the ordered set
12https://ethereum.github.io/yellowpaper/paper.pdf - Appendix E

5

Copyright © 2022 Zymbit Corporation

https://ethereum.github.io/yellowpaper/paper.pdf


3. Generate SHA256 hashes from the byte arrays

4. Concatenate the hashes from lowest to highest hash value and convert
the resulting string into a byte array

5. Generate a SHA256 hash of the byte array

6. Call ΞECREC on the resulting hash and the γ retrieved from the de-
rived packet with identifier ζ

7. If the resulting address matches the corresponding device’s address,
all the primary packets identified by ζ are “authentic”

Both these processes are intricate and susceptible to human error. For these
reasons, the Zoraqle Web Application provides an easy to use service which
verifies a packet’s integrity and allows an owner or subscriber to download
an “authenticity” report - detailing each step of the process.

3.5 Cost Analysis

In this section, we model the on-chain costs of each verification scheme.
Here are the variables involved:

n : the number of data streams connected to the oracle
t : the total time of operation for the oracle (in seconds)
s : the sampling period for the oracle (in seconds)
g() : the gas cost of posting a derived packet on-chain

Verification Scheme 1:
C1(n, t, s) = ( ts) ∗ n ∗ g()

Verification Scheme 2:
C2(n, t, s) = ( ts) ∗ g()

Clearly, scheme 1 is linearly more expensive than scheme 2 by a factor of
n. Consequently, as n increases, it becomes increasingly important for the
owner to weigh the trade-off between verification granularity and cost.

For instance, consider an oracle with 2 connected data streams and a sam-
pling period of 15 minutes (4 packets posted per hour). Let’s assume, for
the purpose of simplicity, g() eternally evaluates to $0.50. The cost of run-
ning the oracle for a day with scheme 1 is $96 and $48 for scheme 2. If we

6

Copyright © 2022 Zymbit Corporation



connect 3 additional streams to the oracle (total of 5), the cost rises to $240
for scheme 1 while remaining at $48 for scheme 2.

4 Monetizing Data Streams

4.1 Marketplace

The Zoraqle Web Application connects owners and subscribers. It allows
prospective subscribers to view all the oracles in the Zoraqle ecosystem and
request access to any of their permissioned marketplaces. If granted access
by the owner, they are now authorized subscribers in the context of that
oracle. Authorized subscribers can buy access to the oracle’s available data
streams for a specified period of time. In the initial project scope, this period
of time is limited to historical data in order to eliminate the counterparty
risk of the oracle halting operation in the future.

There are many approaches to customer discovery and connecting owners
with prospective subscribers - our approach is subject to change over time.

4.2 Establishing a Price

We considered three common models for establishing the price of access
to a data stream. The merits of each are summarized below, and Zoraqle
currently uses method three, Limit Sell:

1. Market Price - Authorized subscribers can bid in an open market-
place for access to a data stream for a specified period (set by the
owner) and the highest bidder is granted access

2. Limit Buy - Authorized subscribers can request to buy access to a
data stream for a specified period and price (set by the subscriber)
and they reach an agreement if the owner approves of their terms

3. Limit Sell - The owner publicly sets a price for access to a data stream
for a specified period (i.e. $/hour) and authorized subscribers can buy
access for however long (contingent on the amount paid)

Each one of these models has its own benefits and drawbacks. Option 1
allows the owner to discover the highest rate that a prospective subscriber
is willing to pay, but it relies on the owner to be present in starting and
ending the auction and only allows for one subscriber at a time to have ac-
cess. On the other hand, option 2 works conversely to traditional markets,

7

Copyright © 2022 Zymbit Corporation



as the market taker sets the price, and the market maker chooses to accept
their terms, or not. Option 3 allows for the owner to set a price and an
arbitrary number of authorized subscribers to buy access simultaneously in
an autonomous manner. All three of these models have their unique use
cases, but as stated previously, Zoraqle applies option 3.

It is up to the owner to decide upon a reasonable price which prospec-
tive subscribers would be willing to pay. Some factors they may consider
are the market’s demand for the data streams their oracle produces and the
verification scheme that their oracle employs.

5 Smart Contracts

5.1 Why Smart Contracts?

Smart contracts are contractual agreements which are autonomously exe-
cuted if certain pre-set conditions are met. They provide a powerful tool
to formalize agreements with crucial invariants: immutability, transparency,
and determinism.

For Zoraqle, we utilize the Ethereum13 Blockchain as a medium to codify
and enforce agreements between owners and subscribers, and post derived
packets on-chain to ensure that the signatures generated by the oracle are
eternal.

5.2 Important Considerations

5.2.1 Cost

Since smart contracts are executed in a decentralized environment, nodes
need a cryptoeconomic incentive to honestly validate transactions. Ethereum
manages this through transaction fees known as gas fees and a block reward.
Every operation that the Ethereum Virtual Machine (EVM) can execute has
a pre-determined gas cost14. A simple arithmetic operation like addition
costs 3 gas, while a more computation and storage intensive operation like
creating a contract costs 32000 gas.

13https://ethereum.org/en/
14https://ethereum.github.io/yellowpaper/paper.pdf - Appendix G

8

Copyright © 2022 Zymbit Corporation

https://ethereum.org/en/
https://ethereum.github.io/yellowpaper/paper.pdf


With this in mind, we must be careful and resourceful when designing our
contract. The code should be efficient and minimal yet fully functional.

5.2.2 Security

Due to the quasi -Turing-complete15 nature of the EVM, developers can write
complex contracts which manage a great deal of data and monetary value.
However, with great power comes great responsibility.

Smart contracts have been known to have potential security vulnerabili-
ties which attack vectors can identify and exploit. Some examples of major
exploitations are the DAO hack16 and Parity multisignature wallet hacks17.
The DAO hack resulted in a loss of 3.6 million ether ($50 million dollars at
the time), and eventually lead to a controversial hard fork to the Ethereum
network in an effort to restore the funds.

For these reasons, contract security is a fundamental part of our develop-
ment process. We believe in carefully and iteratively auditing, testing, and
documenting our contracts to ensure our contracts aren’t vulnerable.

5.3 Example Zoraqle Smart Contract

To obtain a clear understanding of this section, you should have prior knowl-
edge of the Solidity language18 and the EVM. Here is an example of the state
and behaviour of a Zoraqle contract (subject to change based on use case):

1. State variables for the oracle’s address, metadata, sampling period,
and owner’s address

1 pragma solidity ^0.8.0;

2
3 import "./ SafeMath.sol";

4
5 contract Zoraqle {

6 using SafeMath for uint256;

7
8 // address of device owner and oracle

9 address payable public deviceOwner;

15https://ethereum.github.io/yellowpaper/paper.pdf - Page 12, Section 9
16https://en.wikipedia.org/wiki/The_DAO_(organization)
17https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
18https://github.com/ethereum/solidity

9

Copyright © 2022 Zymbit Corporation

https://ethereum.github.io/yellowpaper/paper.pdf
https://en.wikipedia.org/wiki/The_DAO_(organization)
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://github.com/ethereum/solidity


10 address public device;

11
12 // metadata associated with device

13 bytes32 public metadata;

14
15 // seconds between posting data

16 uint32 public samplingPeriod;

2. Constructor to initialize the state of the contract

1 // define constructor

2 constructor(bytes32 data , address owner) {

3 require(msg.sender == tx.origin && owner != msg.

sender);

4 metadata = data;

5 deviceOwner = payable(owner);

6 device = msg.sender;

7 //set intial sampling period to 10 minutes

8 samplingPeriod = 600;

9 }

3. Function modifiers to restrict access to certain functions

1 modifier onlyOwner () {

2 require(

3 msg.sender == deviceOwner ,

4 "Only the device owner can call this function.

"

5 );

6 _;

7 }

8 modifier onlyDevice () {

9 require(

10 msg.sender == device ,

11 "Only the device can call this function."

12 );

13 _;

14 }

15 modifier onlySubscriber () {

16 require(

17 subscribers[msg.sender ].authorized ,

18 "Only a subscriber can call this function."

19 );

20 _;

21 }

4. Function to set the sampling period for the oracle

10

Copyright © 2022 Zymbit Corporation



1 //Set the sampling period of the device

2 function setSamplingPeriod(uint32 period) public

onlyOwner {

3 samplingPeriod = period;

4 }

5. Events for the client side to listen to

1 // Define Events

2 event SourceAndStreamSet(string sourceName , string

streamName);

3 event AccessRequested(address subscriber);

4 event AccessGranted(address subscriber);

5 event AccessRevoked(address subscriber);

6 event Agreement(

7 uint256 start ,

8 uint256 finish ,

9 uint256 amount ,

10 string indexed sourceName ,

11 string indexed streamName ,

12 address indexed subscriber

13 );

14 event DataRecord(

15 uint256 timestamp ,

16 string indexed sourceName ,

17 string indexed streamName ,

18 uint16 numReadings ,

19 bytes32 ref ,

20 bytes signature

21 );

6. Mechanism to define sources/streams and keep track of their prices

1 // define sources , streams , and their respective prices

2 struct Stream {

3 bool exists;

4 uint256 price;

5 }

6 mapping(string => mapping(string => Stream)) public

sources;

7
8 // function to set a source and stream in the context

of this contract

9 function setSourceAndStream(

10 string memory sourceName ,

11 string memory streamName

12 ) public onlyDevice {

13 require(

14 !sources[sourceName ][ streamName ].exists ,

11

Copyright © 2022 Zymbit Corporation



15 "Stream already exists!"

16 );

17 sources[sourceName ][ streamName ]. exists = true;

18 emit SourceAndStreamSet(sourceName , streamName);

19 }

20
21 // function to set the price (in wei) of a specific

stream

22 function setPrice(

23 string memory sourceName ,

24 string memory streamName ,

25 uint256 price

26 ) public onlyOwner {

27 require(

28 sources[sourceName ][ streamName ].exists ,

29 "Stream does not exist"

30 );

31 sources[sourceName ][ streamName ]. price = price;

32 }

7. Mechanism to keep track of subscribers and their identity

1 // define subscribers

2 struct Subscriber {

3 string name;

4 bool authorized;

5 }

6 mapping(address => Subscriber) public subscribers;

7
8 // function for a prospective subscriber to request

access

9 function requestAccess(string memory name) public {

10 require(

11 bytes(subscribers[msg.sender ].name).length ==

0 &&

12 bytes(name).length != 0 &&

13 msg.sender == tx.origin &&

14 msg.sender != device &&

15 msg.sender != deviceOwner ,

16 "Only new subscribers can call this function!"

17 );

18 subscribers[msg.sender ].name = name;

19 emit AccessRequested(msg.sender);

20 }

21
22 // function to authorize a prospective subscriber ’s

request

23 function authorize(address subscriber) public

onlyOwner {

12

Copyright © 2022 Zymbit Corporation



24 require(

25 !subscribers[subscriber ]. authorized &&

26 bytes(subscribers[subscriber ].name).length

!= 0,

27 "Only new subscribers can be granted access!"

28 );

29 subscribers[subscriber ]. authorized = true;

30 emit AccessGranted(subscriber);

31 }

32
33 // function to revoke an authorized subscriber ’s access

34 function revokeAccess(address subscriber) public

onlyOwner {

35 require(

36 subscribers[subscriber ].authorized ,

37 "Owners can only revoke access from authorized

subscribers!"

38 );

39 subscribers[subscriber ]. authorized = false;

40 emit AccessRevoked(subscriber);

41 }

8. Function for subscribers to buy access for a specified interval of time

1 // function for authorized subscribers to buy access to

data

2 function buyAccess(

3 uint256 timestamp1 ,

4 uint256 timestamp2 ,

5 string memory sourceName ,

6 string memory streamName

7 ) public payable onlySubscriber {

8 require(

9 sources[sourceName ][ streamName ]. price != 0 &&

10 timestamp1 < timestamp2 &&

11 timestamp1 < block.timestamp.mul (1000) &&

12 timestamp2 <= block.timestamp.mul (1000) &&

13 msg.value ==

14 sources[sourceName ][ streamName ].price.mul(

15 (timestamp2.sub(timestamp1)).div(1

hours * 1000)

16 )

17 );

18 deviceOwner.transfer(msg.value);

19 emit Agreement(

20 timestamp1 ,

21 timestamp2 ,

22 msg.value ,

23 sourceName ,

13

Copyright © 2022 Zymbit Corporation



24 streamName ,

25 msg.sender

26 );

27 }

9. Function for the oracle to post derived data packets to

1 // function to post derived data packets

2 function postData(

3 string memory sourceName ,

4 string memory streamName ,

5 uint256 timestamp ,

6 uint16 numReadings ,

7 bytes32 ref ,

8 bytes memory signature

9 ) public onlyDevice {

10 require(sources[sourceName ][ streamName ].exists , "

Stream doesn ’t exist!");

11 require(signature.length == 65, "Invalid Signature

!");

12 emit DataRecord(

13 timestamp ,

14 sourceName ,

15 streamName ,

16 numReadings ,

17 ref ,

18 signature

19 );

20 }

6 Hardware Oracle

6.1 Functionality

The hardware oracle acts as an edge node in an IoT system which processes
and relays sensor data to off-chain and on-chain storage. The oracle does
the following:

1. Utilize the Secure Compute Node’s built in supervised boot19 and
perimeter detect20 features to prevent the oracle itself from being phys-
ically tampered with

2. Connect to a secure Ethereum node
19https://zymbit-docs.github.io/docs-staging/branch/alpha/tutorials/

supervised-boot/
20https://docs.zymbit.com/tutorials/perimeter-detect/hsm6/

14

Copyright © 2022 Zymbit Corporation

https://zymbit-docs.github.io/docs-staging/branch/alpha/tutorials/supervised-boot/
https://zymbit-docs.github.io/docs-staging/branch/alpha/tutorials/supervised-boot/
https://docs.zymbit.com/tutorials/perimeter-detect/hsm6/


• The node should be hosted by the oracle’s owner or Zymbit

3. Create and maintain a BIP3221 compliant wallet

• Used to sign and fund Ethereum transactions

• Use the BIP4422 specification for key derivation

• The Secure Compute Node does not allow for exporting private
keys - guarantees origin of data packets

4. Publish a smart contract to the Ethereum Blockchain

• This is only be done when the oracle is first configured

• Each contract serves as an individual marketplace for the data
produced by the oracle

5. Group sensor data for a specified interval (sampling period) and pack-
age and post the primary and derived data packets

6.2 HD Wallet Structure

7 Zoraqle API

7.1 Overview

The Zoraqle API is designed to be a RESTful service which interfaces with
the off-chain storage space for primary data packets (an arbitrary cloud

21https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
22https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

15

Copyright © 2022 Zymbit Corporation

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki


storage solution). Owners and subscribers can make requests to the API to
get data packets that they own or have purchased. Additionally, the oracles
interact with the API to post primary data packets for specific data streams.

7.2 API Authentication

The Zoraqle API acts as the middleman between clients and valuable data
packets, rendering API authentication a fundamental aspect of the service.
The API must be able to verify the source of incoming requests and their
relationship to the oracle that they are attempting to request data from.

Producing a digital signature cryptographically ties your identity to the
message that you signed making it a convenient and secure way to prove
one’s identity. Thus, Zoraqle API requires you to attach a signature and
the signed message to every API request’s body. In order to ensure that the
message and signature weren’t compromised and reused, the client has to
produce a new signature from a new message for every request they make -
duplicates are rejected.

8 Zoraqle Web Application

The Zoraqle Web Application is the client side app which abstracts away
the inherent complexity associated with Zoraqle’s components. The goal of
this application is that users can smoothly use what Zoraqle has to offer
without needing a deep understanding of smart contracts, APIs, or oracles.

16

Copyright © 2022 Zymbit Corporation


	Abstract
	Motivating Factors
	High Level Architecture
	Zoraqle Flow Diagram
	Scalability
	Data Packets
	Verifying Data ``Authenticity"
	Scheme 1
	Scheme 2
	Verification Process

	Cost Analysis

	Monetizing Data Streams
	Marketplace
	Establishing a Price

	Smart Contracts
	Why Smart Contracts?
	Important Considerations
	Cost
	Security

	Example Zoraqle Smart Contract

	Hardware Oracle
	Functionality
	HD Wallet Structure

	Zoraqle API
	Overview
	API Authentication

	Zoraqle Web Application

